skip to main content


Search for: All records

Creators/Authors contains: "Jenerette, G. Darrel"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Agrivoltaic systems that locate crop production and photovoltaic energy generation on the same land have the potential to aid the transition to renewable energy by reducing the competition between food, habitat, and energy needs for land while reducing irrigation requirements. Experimental efforts to date have not adequately developed an understanding of the interaction among local climate, array design and crop selection sufficient to manage trade-offs in system design. This study simulates the energy production, crop productivity and water consumption impacts of agrivoltaic array design choices in arid and semi-arid environments in the Southwestern region of the United States. Using the Penman–Monteith evapotranspiration model, we predict agrivoltaics can reduce crop water consumption by 30%–40% of the array coverage level, depending on local climate. A crop model simulating productivity based on both light level and temperature identifies afternoon shading provided by agrivoltaic arrays as potentially beneficial for shade tolerant plants in hot, dry settings. At the locations considered, several designs and crop combinations exceed land equivalence ratio values of 2, indicating a doubling of the output per acre for the land resource. These results highlight key design axes for agrivoltaic systems and point to a decision support tool for their development.

     
    more » « less
  2. Abstract

    Monitoring and understanding the variability of heat within cities is important for urban planning and public health, and the number of studies measuring intraurban temperature variability is growing. Recognizing that the physiological effects of heat depend on humidity as well as temperature, measurement campaigns have included measurements of relative humidity alongside temperature. However, the role the spatial structure in humidity, independent from temperature, plays in intraurban heat variability is unknown. Here we use summer temperature and humidity from networks of stationary sensors in multiple cities in the United States to show spatial variations in the absolute humidity within these cities are weak. This variability in absolute humidity plays an insignificant role in the spatial variability of the heat index and humidity index (humidex), and the spatial variability of the heat metrics is dominated by temperature variability. Thus, results from previous studies that considered only intraurban variability in temperature will carry over to intraurban heat variability. Also, this suggests increases in humidity from green infrastructure interventions designed to reduce temperature will be minimal. In addition, a network of sensors that only measures temperature is sufficient to quantify the spatial variability of heat across these cities when combined with humidity measured at a single location, allowing for lower-cost heat monitoring networks.

    Significance Statement

    Monitoring the variability of heat within cities is important for urban planning and public health. While the physiological effects of heat depend on temperature and humidity, it is shown that there are only weak spatial variations in the absolute humidity within nine U.S. cities, and the spatial variability of heat metrics is dominated by temperature variability. This suggests increases in humidity will be minimal resulting from green infrastructure interventions designed to reduce temperature. It also means a network of sensors that only measure temperature is sufficient to quantify the spatial variability of heat across these cities when combined with humidity measured at a single location.

     
    more » « less
    Free, publicly-accessible full text available December 1, 2024
  3. Urbanization creates novel ecosystems comprised of species assemblages and environments with no natural analogue. Moreover, irrigation can alter plant function compared to non-irrigated systems. However, the capacity of irrigation to alter functional trait patterns across multiple species is unknown but may be important for the dynamics of urban ecosystems. We evaluated the hypothesis that urban irrigation influences plasticity in functional traits by measuring carbon-gain and water-use traits of 30 tree species planted in Southern California, USA spanning a coastal-to-desert gradient. Tree species respond to irrigation through increasing the carbon-gain trait relationship of leaf nitrogen per specific leaf area compared to their native habitat. Moreover, most species shift to a water-use strategy of greater water loss through stomata when planted in irrigated desert-like environments compared to coastal environments, implying that irrigated species capitalize on increased water availability to cool their leaves in extreme heat and high evaporative demand conditions. Therefore, irrigated urban environments increase the plasticity of trait responses compared to native ecosystems, allowing for novel response to climatic variation. Our results indicate that trees grown in water-resource-rich urban ecosystems can alter their functional traits plasticity beyond those measured in native ecosystems, which can lead to plant trait dynamics with no natural analogue. 
    more » « less
  4. Soil ammonia (NH3) emissions are seldom included in ecosystem nutrient budgets; however, they may represent substantial pathways for ecosystem nitrogen (N) loss, especially in arid regions where hydrologic N losses are comparatively small. To characterize how multiple factors affect soil NH3 emissions, we measured NH3 losses from 6 dryland sites along a gradient in soil pH, atmospheric N deposition, and rainfall. We also enriched soils with ammonium (NH4+), to determine whether N availability would limit emissions, and measured NH3 emissions with passive samplers in soil chambers following experimental wetting. Because the volatilization of NH3 is sensitive to pH, we hypothesized that NH3 emissions would be higher in more alkaline soils and that they would increase with increasing NH4+ availability. Consistent with this hypothesis, average soil NH3 emissions were positively correlated with average site pH (R2 = 0.88, P = 0.004), ranging between 0.77 ± 0.81 µg N-NH3 m−2 h−1 at the least arid and most acidic site and 24.2 ± 16.0 µg N-NH3 m−2 h−1 at the most arid and alkaline site. Wetting soils while simultaneously adding NH4+ increased NH3 emissions from alkaline and moderately acidic soils (F1,35 = 14.7, P < 0.001), suggesting that high N availability can stimulate NH3 emissions even when pH is less than optimal for NH3 volatilization. Thus, both pH and N availability act as proximate controls over NH3 emissions suggesting that these N losses may limit how much N accumulates in arid ecosystems. 
    more » « less
  5. null (Ed.)
  6. While altered precipitation regimes can greatly impact biodiversity and ecosystem functioning, we lack a comprehensive view of how these impacts are mediated by changes to the seasonality of precipitation (i.e., whether it rains more/less in one season relative to another). Over 2 years, we examined how altered seasonal precipitation influenced annual plant biomass and species richness, Simpson’s diversity, and community composition of annual plant communities in a dryland ecosystem that receives both winter and summer rainfall and has distinct annual plant communities in each season. Using a rainfall exclusion, collection, and distribution system, we excluded precipitation and added water during each season individually and compared responses to control plots which received ambient summer and winter precipitation. In control plots, we found five times greater annual plant biomass, twice as many species, and higher diversity in winter relative to summer. Adding water increased annual plant biomass in summer only, did not change richness or diversity in either summer or winter, and modestly shifted community composition. Excluding precipitation in either season reduced annual plant biomass, richness, and Simpson’s diversity. However, in the second winter season, biomass was higher in the plots where precipitation was excluded in the previous summer seasons suggesting that reduced productivity in the summer may facilitate biomass in the winter. Our results suggest that increased precipitation in summer may have stronger short-term impacts on annual plant biodiversity and ecosystem function relative to increased winter precipitation. In contrast, decreasing precipitation may have ubiquitous negative effects on annual plants across both summer and winter but may lead to increased biomass in the following off-seasons. These patterns suggest that annual plant communities exhibit asymmetries in their community and ecosystem responses to altered seasonal precipitation and that considering the seasonality of precipitation is important for predicting the effects of altered precipitation regimes. 
    more » « less
  7. Abstract

    Soil drying and wetting cycles can produce pulses of nitric oxide (NO) and nitrous oxide (N2O) emissions with substantial effects on both regional air quality and Earth’s climate. While pulsed production of N emissions is ubiquitous across ecosystems, the processes governing pulse magnitude and timing remain unclear. We studied the processes producing pulsed NO and N2O emissions at two contrasting drylands, desert and chaparral, where despite the hot and dry conditions known to limit biological processes, some of the highest NO and N2O flux rates have been measured. We measured N2O and NO emissions every 30 min for 24 h after wetting soils with isotopically-enriched nitrate and ammonium solutions to determine production pathways and their timing. Nitrate was reduced to N2O within 15 min of wetting, with emissions exceeding 1000 ng N–N2O m−2 s−1and returning to background levels within four hours, but the pulse magnitude did not increase in proportion to the amount of ammonium or nitrate added. In contrast to N2O, NO was emitted over 24 h and increased in proportion to ammonium addition, exceeding 600 ng N–NO m−2 s−1in desert and chaparral soils. Isotope tracers suggest that both ammonia oxidation and nitrate reduction produced NO. Taken together, our measurements demonstrate that nitrate can be reduced within minutes of wetting summer-dry desert soils to produce large N2O emission pulses and that multiple processes contribute to long-lasting NO emissions. These mechanisms represent substantial pathways of ecosystem N loss that also contribute to regional air quality and global climate dynamics.

     
    more » « less